Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 42(1): 77-91, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28039592

RESUMO

The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1-13C]glucose and [1,2-13C]acetate injection with ex vivo 13C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4-13C]glutamate and [4-13C]glutamine, and percent enrichment in [4-13C]glutamate were detected in the α-syn KO mice. [1,2-13C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.


Assuntos
Aquaporina 4/metabolismo , Córtex Cerebral/metabolismo , Substância Cinzenta/metabolismo , alfa-Sinucleína/metabolismo , Animais , Aquaporina 4/análise , Córtex Cerebral/química , Difusão , Feminino , Substância Cinzenta/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , alfa-Sinucleína/análise
2.
Acta Physiol (Oxf) ; 219(2): 441-452, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27096875

RESUMO

AIM: Maintenance of the blood and extracellular volume requires tight control of endothelial macromolecule permeability, which is regulated by cAMP signalling. This study probes the role of the cAMP mediators rap guanine nucleotide exchange factor 3 and 4 (Epac1 and Epac2) for in vivo control of microvascular macromolecule permeability under basal conditions. METHODS: Epac1-/- and Epac2-/- C57BL/6J mice were produced and compared with wild-type mice for transvascular flux of radio-labelled albumin in skin, adipose tissue, intestine, heart and skeletal muscle. The transvascular leakage was also studied by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using the MRI contrast agent Gadomer-17 as probe. RESULTS: Epac1-/- mice had constitutively increased transvascular macromolecule transport, indicating Epac1-dependent restriction of baseline permeability. In addition, Epac1-/- mice showed little or no enhancement of vascular permeability in response to atrial natriuretic peptide (ANP), whether probed with labelled albumin or Gadomer-17. Epac2-/- and wild-type mice had similar basal and ANP-stimulated clearances. Ultrastructure analysis revealed that Epac1-/- microvascular interendothelial junctions had constitutively less junctional complex. CONCLUSION: Epac1 exerts a tonic inhibition of in vivo basal microvascular permeability. The loss of this tonic action increases baseline permeability, presumably by reducing the interendothelial permeability resistance. Part of the action of ANP to increase permeability in wild-type microvessels may involve inhibition of the basal Epac1-dependent activity.


Assuntos
Permeabilidade Capilar/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão
3.
J Physiol ; 592(2): 325-36, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24218547

RESUMO

Collagen XV and XVIII are ubiquitous constituents of basement membranes. We aimed to study the physiological roles of these two components of the permeability barrier non-invasively in striated muscle in mice deficient in collagen XV or XVIII by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Structural information was obtained with transmission electron microscopy (TEM). MR data were analysed by two different analysis methods to quantify tissue perfusion and microcirculatory exchange parameters to rule out data analysis method-dependent results. Control mice (C57BL/6J Ola/Hsd strain) or mice lacking either collagen XV (Col15a1(-/-)) or XVIII (Col18a1(-/-)) were included in the study. MR images were acquired using a preclinical system using gadodiamide (Gd-DTPA-BMA, molecular weight 0.58 kDa) as a tracer. Exchange capacity (permeability (P)-surface area (S) product relative to blood flow (FB)) was increased in test mice compared to controls, but the contributions from P, S, and FB were different in these two phenotypes. FB was significantly increased in Col18a1(-/-), but slightly decreased in Col15a1(-/-). PS was significantly increased only in Col18a1(-/-) even though P was increased in both phenotypes suggesting S might also be reduced in Col15a1(-/-) mice. Immunohistochemistry and electron microscopy demonstrated alterations in capillary density and morphology in both knockout mouse strains in comparison to the control mice. Both collagen XV and XVIII are important for maintaining normal capillary permeability in the striated muscle. DCE-MRI and the perfusion analyses successfully determined microvascular haemodynamic parameters of genetically modified mice and gave results consistent with more invasive methods.


Assuntos
Capilares/ultraestrutura , Colágeno Tipo XVIII/deficiência , Colágeno/deficiência , Hemodinâmica , Animais , Capilares/metabolismo , Capilares/fisiologia , Colágeno/genética , Colágeno Tipo XVIII/genética , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 010301, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907043

RESUMO

We report experimental studies of the effect of interstitial gas on mass-density segregation in a vertically vibrated mixture of equal-sized bronze and glass spheres. Sufficiently strong vibration in the presence of interstitial gas induces vertical segregation into sharply separated bronze and glass layers. We find that the segregated steady state (i.e., bronze or glass layer on top) is a sensitive function of gas pressure and viscosity, as well as vibration frequency and amplitude. In particular, we identify distinct regimes of behavior that characterize the change from bronze-on-top to glass-on-top steady state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...